for Shapiro-Wilk test p-value<0.05 indicates variables does not have normal distribution
Shapiro-Wilk Normality Test | |
---|---|
Variable | p-value |
BMI | 0.078 |
HOMA-IR | 1.56e-05 |
Age | 0.274 |
eGFR | 0.606 |
Adiponectin | 0.008 |
Leptin | 0.036 |
NAFLD-FS | 0.927 |
Note: data with p-value<0.05 will be log-transformed |
ANOVA Results with Sex | |
---|---|
Variable | p-value |
BMI | 8.04e-03 |
HOMA-IR | 0.54 |
Age | 0.59 |
eGFR | 0.63 |
Adiponectin | 0.92 |
Leptin | 4.36e-05 |
NAFLD-FS | 0.67 |
Spearman Correlation | ||
---|---|---|
Variable Pair | rho | p-value |
BMI and Adiponectin | -0.35 | 0.06 |
BMI and Leptin | 0.52 | 2.94e-03 |
HOMA-IR and Adiponectin | -0.59 | 6.19e-04 |
HOMA-IR and Leptin | 0.25 | 0.17 |
ANOVA Results | |
---|---|
Variable Pair | p-value |
BMI and Sex | 0.008 |
HOMA-IR and Sex | 0.540 |
Age and Sex | 0.587 |
Sex will be used for model building along with BMI, HOMA-IR, and Age |
Spearman Correlation | ||
---|---|---|
Variable Pair | rho | p-value |
BMI and Age | -0.37 | 0.042 |
BMI and HOMA-IR | 0.52 | 0.003 |
Age and HOMA-IR | -0.41 | 0.022 |
These variables will be used for model building along with the variable Sex |
#log transform RBP4 concentrations
vao$LRBP4<-log10(vao$RBP4)
#linear regression with BMI, Sex, Age and HOMAIR
model1=lm(LRBP4~BMI+Sex+Age+LHOMAIR,vao)
vif(model1)
## BMI Sex Age LHOMAIR
## 1.597502 1.292650 1.233974 1.259206
#remove one variable at a time
model2=lm(LRBP4~BMI+Sex+Age,vao) #remove HOMAIR
model3=lm(LRBP4~BMI+Sex+LHOMAIR, vao) #remove Age
model4=lm(LRBP4~BMI+Age+LHOMAIR, vao) #remove Sex
model5=lm(LRBP4~Sex+Age+LHOMAIR, vao) #remove BMI
AIC<-AIC(model1,model2,model3,model4,model5) #summary of AIC
AIC_df<-data.frame(
Model=c("Model 1: Full Model", "Model 2: No HOMA-IR", "Model 3: No Age",
"Model 4: No Sex", "Model 5: No BMI"),
AIC = round(AIC$AIC, 3),
DF = AIC$df)
aic_table <- AIC_df %>%
flextable() %>%
set_header_labels(Model = "Model Description", AIC = "AIC Value",
DF="Degrees of Freedom") %>%
add_header_lines(values = "AIC Comparison of Models") %>%
align(part="header", align="center" ) %>%
add_footer_lines(values = "Note: Lower AIC values indicate a better model.") %>%
fontsize(part = "footer", size = 8) %>%
set_table_properties(layout = "autofit")
aic_table
AIC Comparison of Models | ||
---|---|---|
Model Description | AIC Value | Degrees of Freedom |
Model 1: Full Model | -34.866 | 6 |
Model 2: No HOMA-IR | -36.135 | 5 |
Model 3: No Age | -35.123 | 5 |
Model 4: No Sex | -33.703 | 5 |
Model 5: No BMI | -36.196 | 5 |
Note: Lower AIC values indicate a better model. |
##remove BMI (lowest AIC), add interaction terms
model6=lm(LRBP4~Sex+Age+LHOMAIR+Age*Sex+LHOMAIR*Sex,vao)
summary(model6)
##
## Call:
## lm(formula = LRBP4 ~ Sex + Age + LHOMAIR + Age * Sex + LHOMAIR *
## Sex, data = vao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.21429 -0.07825 0.02313 0.06886 0.20592
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.071668 0.135146 -0.530 0.60058
## SexMale 0.507136 0.207240 2.447 0.02177 *
## Age 0.008636 0.002998 2.880 0.00803 **
## LHOMAIR -0.048056 0.045468 -1.057 0.30065
## SexMale:Age -0.009698 0.004385 -2.212 0.03636 *
## SexMale:LHOMAIR 0.072444 0.113449 0.639 0.52892
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1123 on 25 degrees of freedom
## Multiple R-squared: 0.4636, Adjusted R-squared: 0.3563
## F-statistic: 4.322 on 5 and 25 DF, p-value: 0.005699
AIC(model6,model5)
df | AIC | |
---|---|---|
model6 | 7 | -40.24879 |
model5 | 5 | -36.19628 |
#remove interaction terms one at a time
model7=lm(LRBP4~Sex+Age+LHOMAIR+LHOMAIR*Age,vao)
model8=lm(LRBP4~Sex+Age+LHOMAIR+Age*Sex,vao)
summary(model7)
##
## Call:
## lm(formula = LRBP4 ~ Sex + Age + LHOMAIR + LHOMAIR * Age, data = vao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.24923 -0.06776 0.01125 0.07561 0.20708
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.183427 0.135373 1.355 0.1871
## SexMale 0.106354 0.047271 2.250 0.0331 *
## Age 0.002726 0.002839 0.960 0.3458
## LHOMAIR -0.156739 0.218925 -0.716 0.4804
## Age:LHOMAIR 0.002452 0.004827 0.508 0.6157
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1248 on 26 degrees of freedom
## Multiple R-squared: 0.3113, Adjusted R-squared: 0.2054
## F-statistic: 2.939 on 4 and 26 DF, p-value: 0.03955
summary(model8)
##
## Call:
## lm(formula = LRBP4 ~ Sex + Age + LHOMAIR + Age * Sex, data = vao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.21447 -0.05720 0.02090 0.07151 0.20229
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.087232 0.131407 -0.664 0.51264
## SexMale 0.571891 0.178663 3.201 0.00359 **
## Age 0.008906 0.002934 3.035 0.00541 **
## LHOMAIR -0.036421 0.041179 -0.884 0.38456
## SexMale:Age -0.010753 0.004015 -2.678 0.01267 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.111 on 26 degrees of freedom
## Multiple R-squared: 0.4549, Adjusted R-squared: 0.371
## F-statistic: 5.424 on 4 and 26 DF, p-value: 0.002596
AIC(model6,model7,model8) #remove HOMAIR x Age
df | AIC | |
---|---|---|
model6 | 7 | -40.24879 |
model7 | 6 | -34.50246 |
model8 | 6 | -41.74725 |
AIC_RBP4_iterm<-AIC(model6,model7,model8) #summary of AIC
AIC_df_RBP4_iterm<-data.frame(
Model=c("Model 6: Includes interaction terms", "Model 7: Remove Age x Sex",
"Model 8: Remove HOMA-IR x Sex"),
AIC = round(AIC_RBP4_iterm$AIC,3),
DF = AIC_RBP4_iterm$df)
aic_RBP4_iterm_table <- AIC_df_RBP4_iterm %>%
flextable() %>%
set_header_labels(Model = "Model Description", AIC = "AIC Value",
DF="Degrees of Freedom") %>%
add_header_lines(values = "AIC Comparison of Models") %>%
align(part="header", align="center" ) %>%
add_footer_lines(values = "Note: Lower AIC values indicate a better model.") %>%
fontsize(part = "footer", size = 8) %>%
set_table_properties(layout = "autofit")
aic_RBP4_iterm_table
AIC Comparison of Models | ||
---|---|---|
Model Description | AIC Value | Degrees of Freedom |
Model 6: Includes interaction terms | -40.249 | 7 |
Model 7: Remove Age x Sex | -34.502 | 6 |
Model 8: Remove HOMA-IR x Sex | -41.747 | 6 |
Note: Lower AIC values indicate a better model. |
#remove HOMA-IR
model9=lm(LRBP4~Sex+Age+Age*Sex,vao)
summary(model9)
##
## Call:
## lm(formula = LRBP4 ~ Sex + Age + Age * Sex, data = vao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.21781 -0.06921 0.01956 0.07634 0.19094
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.135948 0.118824 -1.144 0.26262
## SexMale 0.591144 0.176615 3.347 0.00241 **
## Age 0.009749 0.002764 3.527 0.00152 **
## SexMale:Age -0.011126 0.003977 -2.798 0.00938 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1106 on 27 degrees of freedom
## Multiple R-squared: 0.4385, Adjusted R-squared: 0.3761
## F-statistic: 7.027 on 3 and 27 DF, p-value: 0.001216
AIC(model8,model9) # removing HOMA-IR leads to lower AIC
df | AIC | |
---|---|---|
model8 | 6 | -41.74725 |
model9 | 5 | -42.82834 |
#does adding BMI back into the model improve the model?
model10=lm(LRBP4~Sex+Age+Age*Sex+BMI,vao)
summary(model10)
##
## Call:
## lm(formula = LRBP4 ~ Sex + Age + Age * Sex + BMI, data = vao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.195947 -0.053725 0.009708 0.071413 0.190375
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.007224 0.187983 -0.038 0.96964
## SexMale 0.557203 0.181412 3.071 0.00494 **
## Age 0.008911 0.002932 3.040 0.00534 **
## BMI -0.002252 0.002542 -0.886 0.38370
## SexMale:Age -0.010792 0.004011 -2.691 0.01229 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.111 on 26 degrees of freedom
## Multiple R-squared: 0.4549, Adjusted R-squared: 0.3711
## F-statistic: 5.425 on 4 and 26 DF, p-value: 0.002593
AIC(model9,model10)
df | AIC | |
---|---|---|
model9 | 5 | -42.82834 |
model10 | 6 | -41.75058 |
anova(model9,model10) #no, both from ANOVA and AIC, BMI does not improve the model
Res.Df | RSS | Df | Sum of Sq | F | Pr(>F) |
---|---|---|---|---|---|
27 | 0.3302089 | NA | NA | NA | NA |
26 | 0.3205299 | 1 | 0.009679 | 0.7851149 | 0.3837037 |
#does the interaction term improve the model?
model11=lm(LRBP4~Sex+Age,vao)
AIC(model9,model11)
df | AIC | |
---|---|---|
model9 | 5 | -42.82834 |
model11 | 4 | -36.93776 |
anova(model9,model11) #yes
Res.Df | RSS | Df | Sum of Sq | F | Pr(>F) |
---|---|---|---|---|---|
27 | 0.3302089 | NA | NA | NA | NA |
28 | 0.4259237 | -1 | -0.0957148 | 7.82626 | 0.0093797 |
#is this the simplest model?
model12=lm(LRBP4~Sex,vao) #Sex alone
model13=lm(LRBP4~Age,vao) #Age alone
#summary of AIC
AICR_3 <- AIC(model9,model12,model13)
AICR_3df <- data.frame(
Model = c("Age + Sex + Age x Sex", "Age", "Sex"),
AIC = round(AICR_3$AIC, 3),
DF = AICR_3$df)
AICR_3df %>% flextable() %>%
set_header_labels(Model = "Model Description", AIC = "AIC Value",
DF = "Degrees of Freedom") %>%
add_header_lines(values = "AIC Comparison of Models for RBP4") %>%
align(part = "header", align = "center") %>%
add_footer_lines(values = "Note: Lower AIC values indicate a better model.") %>%
fontsize(part = "footer", size = 8) %>%
set_table_properties(layout = "autofit")
AIC Comparison of Models for RBP4 | ||
---|---|---|
Model Description | AIC Value | Degrees of Freedom |
Age + Sex + Age x Sex | -42.828 | 5 |
Age | -34.898 | 3 |
Sex | -33.200 | 3 |
Note: Lower AIC values indicate a better model. |
#summary of anova results
p_values<-data.frame(
Comparison=c("Age+Sex+AgexSex v Age", "Age+Sex+AgexSex v Sex"),
P_value=c(round(anova(model9,model12)$"Pr(>F)"[2],3),
round(anova(model9,model13)$"Pr(>F)"[2],3)))
p_values %>% flextable() %>%
set_header_labels(Comparison="Models", P_value="P-value: Probability >F") %>%
add_header_lines(values="Is this the simplest model that fits the data best?") %>%
align(part="header", align="center" ) %>%
set_table_properties(layout = "autofit") %>%
add_footer_lines(values = "Note: p<0.05 cut-off for retaining more complex model") %>%
fontsize(part = "footer", size = 8)
Is this the simplest model that fits the data best? | |
---|---|
Models | P-value: Probability >F |
Age+Sex+AgexSex v Age | 0.006 |
Age+Sex+AgexSex v Sex | 0.003 |
Note: p<0.05 cut-off for retaining more complex model |
#lower AIC, and anova p<0.05 for the more complex model of Age + Sex + Age x Sex
##final model##
summary(model9)
##
## Call:
## lm(formula = LRBP4 ~ Sex + Age + Age * Sex, data = vao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.21781 -0.06921 0.01956 0.07634 0.19094
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.135948 0.118824 -1.144 0.26262
## SexMale 0.591144 0.176615 3.347 0.00241 **
## Age 0.009749 0.002764 3.527 0.00152 **
## SexMale:Age -0.011126 0.003977 -2.798 0.00938 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1106 on 27 degrees of freedom
## Multiple R-squared: 0.4385, Adjusted R-squared: 0.3761
## F-statistic: 7.027 on 3 and 27 DF, p-value: 0.001216
#variance inflation factors
vif(model9,type=c("predictor")) #because this model has interaction terms we need to use the GVIF
GVIF | Df | GVIF^(1/(2*Df)) | Interacts With | Other Predictors | |
---|---|---|---|---|---|
Sex | 1 | 3 | 1 | Age | – |
Age | 1 | 3 | 1 | Sex | – |
RBP4 Final Model: RBP4 ~ Age + Sex + Age x Sex (p=0.009)
summary(lm(LRBP4~eGFR,vao))
##
## Call:
## lm(formula = LRBP4 ~ eGFR, data = vao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.277030 -0.051103 0.009991 0.070393 0.232258
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.673248 0.222715 3.023 0.00519 **
## eGFR -0.003267 0.002029 -1.611 0.11810
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1364 on 29 degrees of freedom
## Multiple R-squared: 0.0821, Adjusted R-squared: 0.05045
## F-statistic: 2.594 on 1 and 29 DF, p-value: 0.1181
summary(lm(LRBP4~eGFR*Sex,vao))
##
## Call:
## lm(formula = LRBP4 ~ eGFR * Sex, data = vao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.20730 -0.06922 0.01266 0.07022 0.23966
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.832255 0.224461 3.708 0.000954 ***
## eGFR -0.005153 0.002057 -2.505 0.018573 *
## SexMale -0.546204 0.470518 -1.161 0.255861
## eGFR:SexMale 0.006133 0.004256 1.441 0.161035
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1206 on 27 degrees of freedom
## Multiple R-squared: 0.3319, Adjusted R-squared: 0.2576
## F-statistic: 4.471 on 3 and 27 DF, p-value: 0.0113
eGFR is not a significant correlate for RBP4 (p=0.12) eGFR as an interaction term with sex is also not significant (p=0.16)
vao$LTTR<-log10(vao$TTR)
#linear regression with BMI, Sex, Age and HOMA-IR
Tmodel1=lm(LTTR~BMI+Sex+Age+LHOMAIR,vao)
summary(Tmodel1)
##
## Call:
## lm(formula = LTTR ~ BMI + Sex + Age + LHOMAIR, data = vao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.221583 -0.037441 0.002198 0.057781 0.207524
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3295758 0.1437198 9.251 1.04e-09 ***
## BMI -0.0021577 0.0023340 -0.924 0.3637
## SexMale 0.0955022 0.0418519 2.282 0.0309 *
## Age 0.0007957 0.0019475 0.409 0.6862
## LHOMAIR -0.0137659 0.0377648 -0.365 0.7184
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.09806 on 26 degrees of freedom
## Multiple R-squared: 0.3276, Adjusted R-squared: 0.2242
## F-statistic: 3.167 on 4 and 26 DF, p-value: 0.0302
vif(Tmodel1)
## BMI Sex Age LHOMAIR
## 1.597502 1.292650 1.233974 1.259206
#remove one variable at a time
Tmodel2=lm(LTTR~BMI+Sex+Age,vao) #remove HOMA-IR
Tmodel3=lm(LTTR~BMI+Sex+LHOMAIR, vao) #remove Age
Tmodel4=lm(LTTR~BMI+Age+LHOMAIR, vao) #remove Sex
Tmodel5=lm(LTTR~Sex+Age+LHOMAIR, vao) #remove BMI
AIC(Tmodel1,Tmodel2,Tmodel3,Tmodel4,Tmodel5) #summary of AIC
df | AIC | |
---|---|---|
Tmodel1 | 6 | -49.45143 |
Tmodel2 | 5 | -51.29340 |
Tmodel3 | 5 | -51.25302 |
Tmodel4 | 5 | -45.79239 |
Tmodel5 | 5 | -50.44884 |
AICT<-AIC(Tmodel1,Tmodel2,Tmodel3,Tmodel4,Tmodel5) #summary of AIC
AICT_df<-data.frame(
Model=c("Model 1: Full Model", "Model 2: No HOMA-IR", "Model 3: No Age",
"Model 4: No Sex", "Model 5: No BMI"),
AIC = round(AICT$AIC,3), DF = AICT$df)
aicT_table <- AICT_df %>%
flextable() %>%
set_header_labels(Model = "Model Description", AIC = "AIC Value",
DF="Degrees of Freedom") %>%
add_header_lines(values = "AIC Comparison of Models for TTR") %>%
align(part="header", align="center" ) %>%
add_footer_lines(values = "Note: Lower AIC values indicate a better model.") %>%
fontsize(part = "footer", size = 8) %>%
set_table_properties(layout = "autofit")
aicT_table
AIC Comparison of Models for TTR | ||
---|---|---|
Model Description | AIC Value | Degrees of Freedom |
Model 1: Full Model | -49.451 | 6 |
Model 2: No HOMA-IR | -51.293 | 5 |
Model 3: No Age | -51.253 | 5 |
Model 4: No Sex | -45.792 | 5 |
Model 5: No BMI | -50.449 | 5 |
Note: Lower AIC values indicate a better model. |
##remove HOMA-IR (lowest AIC)
#add interaction terms for Age and Sex which are not correlated
Tmodel6=lm(LTTR~Sex+Age+BMI+Age*Sex,vao)
summary(Tmodel6)
##
## Call:
## lm(formula = LTTR ~ Sex + Age + BMI + Age * Sex, data = vao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.202202 -0.031876 -0.006347 0.048701 0.199926
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.150995 0.151538 7.595 4.61e-08 ***
## SexMale 0.421700 0.146241 2.884 0.00779 **
## Age 0.004725 0.002363 1.999 0.05613 .
## BMI -0.001957 0.002049 -0.955 0.34846
## SexMale:Age -0.007491 0.003233 -2.317 0.02864 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08951 on 26 degrees of freedom
## Multiple R-squared: 0.4398, Adjusted R-squared: 0.3537
## F-statistic: 5.104 on 4 and 26 DF, p-value: 0.003592
AIC(Tmodel6,Tmodel2)
df | AIC | |
---|---|---|
Tmodel6 | 6 | -55.11268 |
Tmodel2 | 5 | -51.29340 |
anova(Tmodel6,Tmodel2)
Res.Df | RSS | Df | Sum of Sq | F | Pr(>F) |
---|---|---|---|---|---|
26 | 0.2082919 | NA | NA | NA | NA |
27 | 0.2513029 | -1 | -0.043011 | 5.368841 | 0.0286386 |
##inclusion of interaction term improves model
###Model now TTR~Sex+BMI+Age+Age*Sex
#remove terms
Tmodel7=lm(LTTR~Sex+Age+Age*Sex,vao) # remove BMI
Tmodel8=lm(LTTR~Sex+BMI,vao) # remove Age
Tmodel9=lm(LTTR~Age+BMI,vao) #remove Sex
AICT_iterm<-AIC(Tmodel6,Tmodel7,Tmodel8,Tmodel9) #summary of AIC
AICT_iterm_df<-data.frame(
Model=c("Full Model: Sex+Age+BMI+AgexSex",
"Remove BMI: Sex+Age+AgexSex",
"Remove Age: Sex+BMI",
"Remove Sex: Age+BMI"),
AIC = round(AICT_iterm$AIC,3), DF = AICT_iterm$df)
aicT_iterm_table <- AICT_iterm_df %>%
flextable() %>%
set_header_labels(Model = "Model Description", AIC = "AIC Value",
DF="Degrees of Freedom") %>%
add_header_lines(values = "AIC Comparison of Models for TTR") %>%
align(part="header", align="center" ) %>%
add_footer_lines(values = "Note: Lower AIC values indicate a better model.") %>%
fontsize(part = "footer", size = 8) %>%
set_table_properties(layout = "autofit")
aicT_iterm_table
AIC Comparison of Models for TTR | ||
---|---|---|
Model Description | AIC Value | Degrees of Freedom |
Full Model: Sex+Age+BMI+AgexSex | -55.113 | 6 |
Remove BMI: Sex+Age+AgexSex | -56.044 | 5 |
Remove Age: Sex+BMI | -52.979 | 4 |
Remove Sex: Age+BMI | -47.742 | 4 |
Note: Lower AIC values indicate a better model. |
#lowest AIC removing BMI
#confirm with anova
anova(Tmodel7,Tmodel8)
Res.Df | RSS | Df | Sum of Sq | F | Pr(>F) |
---|---|---|---|---|---|
27 | 0.2155956 | NA | NA | NA | NA |
28 | 0.2538616 | -1 | -0.038266 | 4.792217 | 0.0374116 |
anova(Tmodel6,Tmodel7) # removing BMI leads to lower AIC, stat. sig.
Res.Df | RSS | Df | Sum of Sq | F | Pr(>F) |
---|---|---|---|---|---|
26 | 0.2082919 | NA | NA | NA | NA |
27 | 0.2155956 | -1 | -0.0073038 | 0.911693 | 0.3484596 |
###Model now TTR ~ Sex + Age + Age * Sex
#does adding HOMA-IR back into the model improve the model?
Tmodel10=lm(LTTR~Sex+Age+Age*Sex+LHOMAIR,vao)
summary(Tmodel10)
##
## Call:
## lm(formula = LTTR ~ Sex + Age + Age * Sex + LHOMAIR, data = vao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.219463 -0.034099 -0.000104 0.048686 0.205280
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.060046 0.107323 9.877 2.74e-10 ***
## SexMale 0.442935 0.145917 3.036 0.0054 **
## Age 0.005092 0.002397 2.124 0.0433 *
## LHOMAIR -0.015603 0.033632 -0.464 0.6465
## SexMale:Age -0.007621 0.003279 -2.324 0.0282 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.09069 on 26 degrees of freedom
## Multiple R-squared: 0.425, Adjusted R-squared: 0.3365
## F-statistic: 4.803 on 4 and 26 DF, p-value: 0.004906
AIC(Tmodel7, Tmodel10)
df | AIC | |
---|---|---|
Tmodel7 | 5 | -56.04428 |
Tmodel10 | 6 | -54.29986 |
anova(Tmodel7, Tmodel10) #no, both from ANOVA and AIC, HOMA does not improve the model
Res.Df | RSS | Df | Sum of Sq | F | Pr(>F) |
---|---|---|---|---|---|
27 | 0.2155956 | NA | NA | NA | NA |
26 | 0.2138255 | 1 | 0.0017702 | 0.2152428 | 0.6465498 |
#does the interaction term improve the model?
Tmodel11=lm(LTTR~Sex+Age,vao)
AIC(Tmodel7,Tmodel11)
df | AIC | |
---|---|---|
Tmodel7 | 5 | -56.04428 |
Tmodel11 | 4 | -51.95223 |
anova(Tmodel7,Tmodel11) #yes
Res.Df | RSS | Df | Sum of Sq | F | Pr(>F) |
---|---|---|---|---|---|
27 | 0.2155956 | NA | NA | NA | NA |
28 | 0.2624138 | -1 | -0.0468181 | 5.863243 | 0.022454 |
#is this the simplest model?
Tmodel12=lm(LTTR~Sex,vao) #Sex alone
Tmodel13=lm(LTTR~Age,vao) #Age alone
AICT2<-AIC(Tmodel7,Tmodel11,Tmodel12,Tmodel13) #summary of AIC
AICT2_df<-data.frame(
Model=c("Sex + Age + Sex x Age",
"Sex + Age","Sex", "Age"),
AIC = round(AICT2$AIC,3), DF = AICT2$df)
aicT2_table <- AICT2_df %>%
flextable() %>%
set_header_labels(Model = "Model Description", AIC = "AIC Value",
DF="Degrees of Freedom") %>%
add_header_lines(values = "AIC Comparison of Models for TTR") %>%
align(part="header", align="center" ) %>%
add_footer_lines(values="Note: Lower AIC values indicate a better model.") %>%
fontsize(part = "footer", size = 8) %>%
set_table_properties(layout = "autofit")
aicT2_table
AIC Comparison of Models for TTR | ||
---|---|---|
Model Description | AIC Value | Degrees of Freedom |
Sex + Age + Sex x Age | -56.044 | 5 |
Sex + Age | -51.952 | 4 |
Sex | -52.919 | 3 |
Age | -44.500 | 3 |
Note: Lower AIC values indicate a better model. |
#summary of anova results
p_values<-data.frame(
Comparison=c("Age+Sex+AgexSex v Age+Sex", "Age+Sex+AgexSex v Age",
"Age+Sex+AgexSex v Sex"),
P_value=c(round(anova(Tmodel7,Tmodel11)$"Pr(>F)"[2],3),
round(anova(Tmodel7,Tmodel12)$"Pr(>F)"[2],3),
round(anova(Tmodel7,Tmodel13)$"Pr(>F)"[2],3)))
p_values %>% flextable() %>%
set_header_labels(Comparison="Models", P_value="P-value: Probability >F") %>%
add_header_lines(values="Is this the simplest model that fits the data best?") %>%
align(part="header", align="center" ) %>%
set_table_properties(layout = "autofit") %>%
add_footer_lines(values = "Note: p<0.05 cut-off for retaining more complex model") %>%
fontsize(part = "footer", size = 8)
Is this the simplest model that fits the data best? | |
---|---|
Models | P-value: Probability >F |
Age+Sex+AgexSex v Age+Sex | 0.022 |
Age+Sex+AgexSex v Age | 0.045 |
Age+Sex+AgexSex v Sex | 0.001 |
Note: p<0.05 cut-off for retaining more complex model |
##final model for TTR
summary(Tmodel7)
##
## Call:
## lm(formula = LTTR ~ Sex + Age + Age * Sex, data = vao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.219703 -0.039820 0.003317 0.047080 0.200418
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.039175 0.096013 10.823 2.53e-11 ***
## SexMale 0.451183 0.142710 3.162 0.00385 **
## Age 0.005453 0.002233 2.442 0.02145 *
## SexMale:Age -0.007781 0.003213 -2.421 0.02245 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08936 on 27 degrees of freedom
## Multiple R-squared: 0.4202, Adjusted R-squared: 0.3558
## F-statistic: 6.522 on 3 and 27 DF, p-value: 0.00184
#variance inflation factors
vif(Tmodel7,type=c("predictor")) #because this model has interaction terms we need to use the GVIF
GVIF | Df | GVIF^(1/(2*Df)) | Interacts With | Other Predictors | |
---|---|---|---|---|---|
Sex | 1 | 3 | 1 | Age | – |
Age | 1 | 3 | 1 | Sex | – |
TTR Final Model: TTR ~ Age + Sex + Age x Sex (p=0.02)
vao$LROL<-log10(vao$Sretinol)
#linear regression with BMI, Sex, Age and HOMAIR
Rmodel1=lm(LROL~BMI+Sex+Age+LHOMAIR,vao)
vif(Rmodel1)
## BMI Sex Age LHOMAIR
## 1.597502 1.292650 1.233974 1.259206
#remove one variable at a time
Rmodel2=lm(LROL~BMI+Sex+Age,vao) #remove HOMA-IR
Rmodel3=lm(LROL~BMI+Sex+LHOMAIR, vao) #remove Age
Rmodel4=lm(LROL~BMI+Age+LHOMAIR, vao) #remove Sex
Rmodel5=lm(LROL~Sex+Age+LHOMAIR, vao) #remove BMI
AIC(Rmodel1,Rmodel2,Rmodel3,Rmodel4,Rmodel5) #summary of AIC
df | AIC | |
---|---|---|
Rmodel1 | 6 | -37.11641 |
Rmodel2 | 5 | -38.95172 |
Rmodel3 | 5 | -37.12858 |
Rmodel4 | 5 | -37.23750 |
Rmodel5 | 5 | -38.03374 |
AICR<-AIC(Rmodel1,Rmodel2,Rmodel3,Rmodel4,Rmodel5) #summary of AIC
AICR_df<-data.frame(
Model=c("Model 1: Full Model", "Model 2: No HOMA-IR", "Model 3: No Age",
"Model 4: No Sex", "Model 5: No BMI"),
AIC = AICR$AIC,
DF = AICR$df)
aicR_table <- AICR_df %>%
flextable() %>%
set_header_labels(Model = "Model Description", AIC = "AIC Value",
DF="Degrees of Freedom") %>%
add_header_lines(values = "AIC Comparison of Models for Retinol") %>%
align(part="header", align="center" ) %>%
add_footer_lines(values = "Note: Lower AIC values indicate a better model.") %>%
fontsize(part = "footer", size = 8) %>%
set_table_properties(layout = "autofit")
aicR_table
AIC Comparison of Models for Retinol | ||
---|---|---|
Model Description | AIC Value | Degrees of Freedom |
Model 1: Full Model | -37.11641 | 6 |
Model 2: No HOMA-IR | -38.95172 | 5 |
Model 3: No Age | -37.12858 | 5 |
Model 4: No Sex | -37.23750 | 5 |
Model 5: No BMI | -38.03374 | 5 |
Note: Lower AIC values indicate a better model. |
##remove HOMA-IR (lowest AIC), add interaction term
Rmodel6=lm(LROL~Age+BMI+Sex+Age*Sex,vao)
summary(Rmodel6)
##
## Call:
## lm(formula = LROL ~ Age + BMI + Sex + Age * Sex, data = vao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.23533 -0.07032 0.00921 0.05459 0.24907
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.005764 0.197897 -0.029 0.9770
## Age 0.005830 0.003086 1.889 0.0701 .
## BMI -0.002747 0.002676 -1.026 0.3142
## SexMale 0.281136 0.190980 1.472 0.1530
## Age:SexMale -0.004974 0.004222 -1.178 0.2494
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1169 on 26 degrees of freedom
## Multiple R-squared: 0.3144, Adjusted R-squared: 0.2089
## F-statistic: 2.98 on 4 and 26 DF, p-value: 0.03764
#can we justify inclusion of interaction terms?
AIC(Rmodel6,Rmodel2)
df | AIC | |
---|---|---|
Rmodel6 | 6 | -38.56389 |
Rmodel2 | 5 | -38.95172 |
anova(Rmodel6,Rmodel2)
Res.Df | RSS | Df | Sum of Sq | F | Pr(>F) |
---|---|---|---|---|---|
26 | 0.3552323 | NA | NA | NA | NA |
27 | 0.3741953 | -1 | -0.0189629 | 1.387927 | 0.2494263 |
#cannot justify interaction terms
#remove each term
Rmodel7=lm(LROL~Age+BMI,vao) #remove Sex
Rmodel8=lm(LROL~Age+Sex,vao) # remove BMI
Rmodel9=lm(LROL~BMI+Sex,vao) # remove Age
p_values<-data.frame(
Comparison=c("Age+Sex+BMI v Age+BMI", "Age+Sex+BMI v Age+Sex",
"Age+Sex+BMI v BMI+Sex"),
P_value=c(round(anova(Rmodel2,Rmodel7)$"Pr(>F)"[2],3),
round(anova(Rmodel2,Rmodel8)$"Pr(>F)"[2],3),
round(anova(Rmodel2,Rmodel9)$"Pr(>F)"[2],3)))
p_values %>% flextable() %>%
set_header_labels(Comparison="Comparison", P_value="P-value: Probability >F") %>%
add_header_lines(values="ANOVA Comparison") %>%
align(part="header", align="center" ) %>%
set_table_properties(layout = "autofit") %>%
add_footer_lines(values = "Note: p<0.05 cut-off for retaining more complex model") %>%
fontsize(part = "footer", size = 8)
ANOVA Comparison | |
---|---|
Comparison | P-value: Probability >F |
Age+Sex+BMI v Age+BMI | 0.213 |
Age+Sex+BMI v Age+Sex | 0.267 |
Age+Sex+BMI v BMI+Sex | 0.152 |
Note: p<0.05 cut-off for retaining more complex model |
{AICR_2<-AIC(Rmodel2,Rmodel7,Rmodel8,Rmodel9) #summary of AIC
AICR_2df<-data.frame(
Model=c("Age + BMI + Sex","Age + BMI","Age + Sex",
"BMI + Sex"),
AIC = AICR_2$AIC, DF = AICR_2$df)
aicR_2_table <- AICR_2df %>%
flextable() %>%
set_header_labels(Model = "Model Description", AIC = "AIC Value",
DF="Degrees of Freedom") %>%
add_header_lines(values = "AIC Comparison of Models for Retinol") %>%
align(part="header", align="center" ) %>%
add_footer_lines(values = "Note: Lower AIC values indicate a better model.") %>%
fontsize(part = "footer", size = 8) %>%
set_table_properties(layout = "autofit")}
aicR_2_table
AIC Comparison of Models for Retinol | ||
---|---|---|
Model Description | AIC Value | Degrees of Freedom |
Age + BMI + Sex | -38.95172 | 5 |
Age + BMI | -39.14023 | 4 |
Age + Sex | -39.50958 | 4 |
BMI + Sex | -38.55048 | 4 |
Note: Lower AIC values indicate a better model. |
#Age and Sex has the lowest AIC
#single regressions
Rmodel10=lm(LROL~Age,vao)
Rmodel11=lm(LROL~Sex,vao)
AIC(Rmodel11, Rmodel10,Rmodel8)
df | AIC | |
---|---|---|
Rmodel11 | 3 | -37.36999 |
Rmodel10 | 3 | -37.28122 |
Rmodel8 | 4 | -39.50958 |
anova(Rmodel10,Rmodel8) #not better than Age alone
Res.Df | RSS | Df | Sum of Sq | F | Pr(>F) |
---|---|---|---|---|---|
29 | 0.4493028 | NA | NA | NA | NA |
28 | 0.3920143 | 1 | 0.0572885 | 4.09189 | 0.0527329 |
anova(Rmodel11,Rmodel8) #not better than Sex alone
Res.Df | RSS | Df | Sum of Sq | F | Pr(>F) |
---|---|---|---|---|---|
29 | 0.4480181 | NA | NA | NA | NA |
28 | 0.3920143 | 1 | 0.0560038 | 4.000128 | 0.0552816 |
summary(Rmodel10)
##
## Call:
## lm(formula = LROL ~ Age, data = vao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.31522 -0.04495 0.01325 0.06391 0.26545
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.040082 0.097843 -0.410 0.6851
## Age 0.004689 0.002225 2.107 0.0438 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1245 on 29 degrees of freedom
## Multiple R-squared: 0.1328, Adjusted R-squared: 0.1029
## F-statistic: 4.441 on 1 and 29 DF, p-value: 0.04385
summary(Rmodel11)
##
## Call:
## lm(formula = LROL ~ Sex, data = vao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.32125 -0.04191 0.00414 0.05189 0.23507
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.12539 0.02779 4.512 9.83e-05 ***
## SexMale 0.09938 0.04666 2.130 0.0418 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1243 on 29 degrees of freedom
## Multiple R-squared: 0.1353, Adjusted R-squared: 0.1055
## F-statistic: 4.537 on 1 and 29 DF, p-value: 0.04178
#what about BMI alone
Rmodel12=lm(LROL~BMI,vao)
summary(Rmodel12)
##
## Call:
## lm(formula = LROL ~ BMI, data = vao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.254853 -0.039187 0.007799 0.053518 0.304417
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.382573 0.089540 4.273 0.00019 ***
## BMI -0.005809 0.002274 -2.555 0.01615 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1208 on 29 degrees of freedom
## Multiple R-squared: 0.1837, Adjusted R-squared: 0.1555
## F-statistic: 6.526 on 1 and 29 DF, p-value: 0.01615
#best p-value for BMI alone
{AICR_3<-AIC(Rmodel7,Rmodel8,Rmodel9,Rmodel10,Rmodel11,Rmodel12) #summary of AIC
AICR_3df<-data.frame(
Model=c("Age + BMI","Age + Sex",
"BMI + Sex", "Age", "Sex", "BMI"),
AIC = AICR_3$AIC, DF = AICR_3$df)
aicR_3_table <- AICR_3df %>%
flextable() %>%
set_header_labels(Model = "Model Description", AIC = "AIC Value",
DF="Degrees of Freedom") %>%
add_header_lines(values = "AIC Comparison of Models for Retinol") %>%
align(part="header", align="center" ) %>%
add_footer_lines(values = "Note: Lower AIC values indicate a better model.") %>%
fontsize(part = "footer", size = 8) %>%
set_table_properties(layout = "autofit")}
aicR_3_table
AIC Comparison of Models for Retinol | ||
---|---|---|
Model Description | AIC Value | Degrees of Freedom |
Age + BMI | -39.14023 | 4 |
Age + Sex | -39.50958 | 4 |
BMI + Sex | -38.55048 | 4 |
Age | -37.28122 | 3 |
Sex | -37.36999 | 3 |
BMI | -39.15575 | 3 |
Note: Lower AIC values indicate a better model. |
#BMI alone also has lowest AIC
##final model is ROL ~ BMI
Retinol Final Model: Retinol ~ BMI (p=0.016)
vaono23 <-vao %>% filter(ID!= "51-3523") #omit 23 from data set
Rmodel12no23<-lm(LROL~BMI,vaono23)
summary(Rmodel12no23)
##
## Call:
## lm(formula = LROL ~ BMI, data = vaono23)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.258376 -0.049593 0.003565 0.047807 0.293192
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.321821 0.086169 3.735 0.000852 ***
## BMI -0.003968 0.002226 -1.783 0.085468 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1114 on 28 degrees of freedom
## Multiple R-squared: 0.1019, Adjusted R-squared: 0.06987
## F-statistic: 3.178 on 1 and 28 DF, p-value: 0.08547
Omission of participant with liver fibrosis and overt retinol deficiency from the regression model increased the p-value of correlation between BMI and retinol to p=0.09
Rno23model1=lm(LROL~BMI+Sex+Age+LHOMAIR,vaono23)
summary(Rno23model1)
##
## Call:
## lm(formula = LROL ~ BMI + Sex + Age + LHOMAIR, data = vaono23)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.255391 -0.062874 -0.002688 0.052888 0.230952
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0639189 0.1612890 0.396 0.695
## BMI -0.0008989 0.0027014 -0.333 0.742
## SexMale 0.0677670 0.0466130 1.454 0.158
## Age 0.0028660 0.0021708 1.320 0.199
## LHOMAIR -0.0193169 0.0420587 -0.459 0.650
##
## Residual standard error: 0.1092 on 25 degrees of freedom
## Multiple R-squared: 0.2294, Adjusted R-squared: 0.1061
## F-statistic: 1.86 on 4 and 25 DF, p-value: 0.1489
#remove one variable at a time
Rno23model2=lm(LROL~BMI+Sex+Age,vaono23) #remove HOMAIR
Rno23model3=lm(LROL~BMI+Sex+LHOMAIR, vaono23) #remove Age
Rno23model4=lm(LROL~BMI+Age+LHOMAIR, vaono23) #remove Sex
Rno23model5=lm(LROL~Sex+Age+LHOMAIR, vaono23) #remove BMI
AICR<-AIC(Rno23model1, Rno23model2, Rno23model3, Rno23model4,Rno23model5) #summary of AIC
AICR_df<-data.frame(
Model=c("Model 1: Full Model", "Model 2: No HOMA-IR", "Model 3: No Age",
"Model 4: No Sex", "Model 5: No BMI"),
AIC = AICR$AIC,
DF = AICR$df)
aicR_table <- AICR_df %>%
flextable() %>%
set_header_labels(Model = "Model Description", AIC = "AIC Value",
DF="Degrees of Freedom") %>%
add_header_lines(values = "AIC Comparison of Models for Retinol (Omitting 23)") %>%
align(part="header", align="center" ) %>%
add_footer_lines(values = "Note: Lower AIC values indicate a better model.") %>%
fontsize(part = "footer", size = 8) %>%
set_table_properties(layout = "autofit")
aicR_table
AIC Comparison of Models for Retinol (Omitting 23) | ||
---|---|---|
Model Description | AIC Value | Degrees of Freedom |
Model 1: Full Model | -41.21348 | 6 |
Model 2: No HOMA-IR | -42.96142 | 5 |
Model 3: No Age | -41.19143 | 5 |
Model 4: No Sex | -40.77869 | 5 |
Model 5: No BMI | -43.08092 | 5 |
Note: Lower AIC values indicate a better model. |
#remove BMI, add interaction terms
Rno23model6=lm(LROL~Sex+Age+LHOMAIR+Sex*Age,vaono23)
Rno23model7=lm(LROL~Sex+Age+Sex*Age,vaono23) #remove HOMA
Rno23model8=lm(LROL~Sex+Age,vaono23) #remove HOMA and Sex * Age
Rno23model9=lm(LROL~Sex+LHOMAIR,vaono23) #remove Age
Rno23model10=lm(LROL~Age+LHOMAIR,vaono23) #remove Sex
AIC(Rno23model5, Rno23model6,Rno23model7,Rno23model8,Rno23model9,Rno23model10)
df | AIC | |
---|---|---|
Rno23model5 | 5 | -43.08092 |
Rno23model6 | 6 | -42.14048 |
Rno23model7 | 5 | -43.85300 |
Rno23model8 | 4 | -44.68606 |
Rno23model9 | 4 | -42.70304 |
Rno23model10 | 4 | -41.45723 |
#model 8 has the lowest AIC
#Sex + Age
summary(Rno23model8)
##
## Call:
## lm(formula = LROL ~ Sex + Age, data = vaono23)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.26566 -0.06596 -0.01165 0.04795 0.21500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.004218 0.085347 -0.049 0.9609
## SexMale 0.076579 0.040293 1.901 0.0681 .
## Age 0.003450 0.001926 1.791 0.0845 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.106 on 27 degrees of freedom
## Multiple R-squared: 0.2157, Adjusted R-squared: 0.1576
## F-statistic: 3.713 on 2 and 27 DF, p-value: 0.03763
#how does this compare to the predictors alone
Rno23model11=lm(LROL~Sex,vaono23) #Sex alone
Rno23model12=lm(LROL~Age,vaono23) #Age alone
AIC(Rno23model8, Rno23model11, Rno23model12)
df | AIC | |
---|---|---|
Rno23model8 | 4 | -44.68606 |
Rno23model11 | 3 | -43.31838 |
Rno23model12 | 3 | -42.91924 |
anova(Rno23model8,Rno23model11) #not better than Sex alone
Res.Df | RSS | Df | Sum of Sq | F | Pr(>F) |
---|---|---|---|---|---|
27 | 0.3033459 | NA | NA | NA | NA |
28 | 0.3393832 | -1 | -0.0360373 | 3.207581 | 0.0845163 |
anova(Rno23model8,Rno23model12) #not better than Age alone
Res.Df | RSS | Df | Sum of Sq | F | Pr(>F) |
---|---|---|---|---|---|
27 | 0.3033459 | NA | NA | NA | NA |
28 | 0.3439287 | -1 | -0.0405828 | 3.612165 | 0.0680846 |
summary(Rno23model11) #p>0.05
##
## Call:
## lm(formula = LROL ~ Sex, data = vaono23)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.287994 -0.050487 0.001027 0.044673 0.235073
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.14230 0.02526 5.634 4.92e-06 ***
## SexMale 0.08247 0.04171 1.977 0.0579 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1101 on 28 degrees of freedom
## Multiple R-squared: 0.1225, Adjusted R-squared: 0.09117
## F-statistic: 3.909 on 1 and 28 DF, p-value: 0.05794
summary(Rno23model12) #p>0.05
##
## Call:
## lm(formula = LROL ~ Age, data = vaono23)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.291619 -0.052172 0.005761 0.063472 0.261440
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.010978 0.088847 0.124 0.9025
## Age 0.003749 0.002007 1.868 0.0723 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1108 on 28 degrees of freedom
## Multiple R-squared: 0.1108, Adjusted R-squared: 0.079
## F-statistic: 3.488 on 1 and 28 DF, p-value: 0.07233
summary(lm(LROL~BMI,vaono23))
##
## Call:
## lm(formula = LROL ~ BMI, data = vaono23)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.258376 -0.049593 0.003565 0.047807 0.293192
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.321821 0.086169 3.735 0.000852 ***
## BMI -0.003968 0.002226 -1.783 0.085468 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1114 on 28 degrees of freedom
## Multiple R-squared: 0.1019, Adjusted R-squared: 0.06987
## F-statistic: 3.178 on 1 and 28 DF, p-value: 0.08547
No significant correlates for retinol after omission participant with gross morphology of liver fibrosis and overt retinol deficiency
ANOVA Results Table | ||
---|---|---|
Analyte | SNP | p-value |
Retinol | TTRsnp | 0.63 |
Retinol | RBP4snp | 0.86 |
RBP4 | TTRsnp | 0.48 |
RBP4 | RBP4snp | 0.70 |
TTR | TTRsnp | 0.64 |
TTR | RBP4snp | 0.36 |
Analyte Conc. Stratified by RBP4 Genotype (rs10882272) | |||
---|---|---|---|
Genotype | RBP4 (μM) | TTR (μM) | Retinol (μM) |
1/1 | 1.91 (1.00, 3.16) | 19.20 (10.37, 26.61) | 1.35 (0.71, 2.88) |
1/2 | 2.15 (1.19, 3.24) | 21.27 (13.07, 29.81) | 1.52 (1.00, 2.16) |
2/2 | 2.10 (0.95, 3.18) | 20.24 (12.03, 29.55) | 1.42 (0.64, 1.97) |
Concentrations shown as geometric mean and range | |||
For the RBP4 genotype, 1/1 refers to T/T, 1/2 to T/C and 2/2 to C/C for single nucleotide polymorphism in the 3’ untranslated region |
Analyte Conc. Stratified by TTR Genotype (rs1667255) | |||
---|---|---|---|
Genotype | RBP4 (μM) | TTR (μM) | Retinol (μM) |
1/1 | 1.88 (0.95, 3.16) | 18.84 (12.03, 26.61) | 1.42 (0.64, 2.88) |
1/2 | 2.10 (1.00, 3.04) | 20.39 (10.37, 29.81) | 1.38 (0.71, 1.69) |
2/2 | 2.27 (1.50, 3.24) | 22.27 (16.46, 29.79) | 1.56 (1.21, 2.16) |
Concentrations shown as geometric mean and range | |||
For the TTR genotype, 1/1 refers to A/A, 1/2 to A/C and 2/2 to C/C for intronic single nucleotide polymorphism |